Exercise 9

Solve the wave equation with initial data

$$
u(x, 0)=\frac{1}{1+x^{2}}, \quad \frac{\partial u}{\partial t}(x, 0)=-2 x e^{-x^{2}}, \quad-\infty<x<\infty .
$$

[Hint: Use Exercises 5 and 7 and superposition.]

Solution

The aim is to solve the wave equation on the whole line for all time subject to initial conditions.

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty,-\infty<t<\infty \\
& u(x, 0)=\frac{1}{1+x^{2}} \\
& \frac{\partial u}{\partial t}(x, 0)=-2 x e^{-x^{2}}
\end{aligned}
$$

Take advantage of the fact that the wave equation is a linear equation by setting $u(x, t)=v(x, t)+w(x, t)$. The PDE becomes

$$
\begin{gathered}
\frac{\partial^{2}}{\partial t^{2}}(v+w)=c^{2} \frac{\partial^{2}}{\partial x^{2}}(v+w) \\
\frac{\partial^{2} v}{\partial t^{2}}+\frac{\partial^{2} w}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} w}{\partial x^{2}}\right) \\
\frac{\partial^{2} v}{\partial t^{2}}+\frac{\partial^{2} w}{\partial t^{2}}=c^{2} \frac{\partial^{2} v}{\partial x^{2}}+c^{2} \frac{\partial^{2} w}{\partial x^{2}}
\end{gathered}
$$

For this equation to remain satisfied, set

$$
\frac{\partial^{2} v}{\partial t^{2}}=c^{2} \frac{\partial^{2} v}{\partial x^{2}} \quad \text { and } \quad \frac{\partial^{2} w}{\partial t^{2}}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}
$$

On the other hand, the initial conditions become

$$
\begin{aligned}
& u(x, 0)=v(x, 0)+w(x, 0)=\frac{1}{1+x^{2}} \\
& \frac{\partial u}{\partial t}(x, 0)=\frac{\partial v}{\partial t}(x, 0)+\frac{\partial w}{\partial t}(x, 0)=-2 x e^{-x^{2}} .
\end{aligned}
$$

For the conditions to remain satisfied, set

$$
\begin{array}{ll}
v(x, 0)=\frac{1}{1+x^{2}} & w(x, 0)=0 \\
\frac{\partial v}{\partial t}(x, 0)=0 & \frac{\partial w}{\partial t}(x, 0)=-2 x e^{-x^{2}} .
\end{array}
$$

To summarize, the initial value problem for u is equivalent to the following problems for v and w,

$$
\begin{array}{ll}
\frac{\partial^{2} v}{\partial t^{2}}=c^{2} \frac{\partial^{2} v}{\partial x^{2}}, \quad-\infty<x, t<\infty & \frac{\partial^{2} w}{\partial t^{2}}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}, \quad-\infty<x, t<\infty \\
v(x, 0)=\frac{1}{1+x^{2}} & w(x, 0)=0 \\
\frac{\partial v}{\partial t}(x, 0)=0 & \frac{\partial w}{\partial t}(x, 0)=-2 x e^{-x^{2}}
\end{array}
$$

which have been solved for already in Exercise 5 and Exercise 7, respectively.

$$
v(x, t)=\frac{1}{2}\left[\frac{1}{1+(x+c t)^{2}}+\frac{1}{1+(x-c t)^{2}}\right] \quad w(x, t)=\frac{1}{2 c}\left[e^{-(x+c t)^{2}}-e^{-(x-c t)^{2}}\right]
$$

Therefore, since $u(x, t)=v(x, t)+w(x, t)$,

$$
u(x, t)=\frac{1}{2}\left[\frac{1}{1+(x+c t)^{2}}+\frac{1}{1+(x-c t)^{2}}\right]+\frac{1}{2 c}\left[e^{-(x+c t)^{2}}-e^{-(x-c t)^{2}}\right] .
$$

Below are plots of $u(x, t)$ versus x over $-20<x<20$ for $t=0,1,2,4,6,8$ with $c=1$.

